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Abstract.Knee replacement surgery is currently the primary treatment for end-stage knee osteoarthritis. 

However, joint replacement surgery still has a high rate of dissatisfaction. One of the reasons is that the 

prosthesis system does not fit the anatomy of Chinese people. For handling this problem, we study the 

morphological characteristics of the distal femur, which helps design individualized prosthesis systems. 

Firstly, the point cloud models of femur samples of Chinese people were derived from the CT scan data by 

Mimics software. And then, the point cloud models were roughly matched by FPFH (Fast Point cloud 

Feature Histogram) before the fine registration by ICP (Iterative Closest Point), and by doing so, the average 

model and correspondence of points were obtained. Finally, the Principal Component Analysis (PCA) was 

conducted to analyze the morphological characteristics of the distal femur and build the Statistical Shape 

Model (SSM) of the set of distal femur samples. It is found that the most significant morphological 

characteristics of the distal femur can be listed in the following order: The volume size, the mediolateral and 

anteroposterior sizes of the femur, curvature from the femoral shaft to medial and lateral condyle, curvature 

of the anterior and posterior condyle, width and depth of the trochlear groove, etc. These results will guide 

the local improvement of the existing prosthesis and provide the basic reference to the new design of the 

multi-class prosthesis system. 
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1. Introduction 

In the past few decades, total knee arthroplasty has developed rapidly and has become the main-stream 

treatment for end-stage knee osteoarthritis. However, it is reported in the literature that up to 30% of patients 

are dissatisfied with the joint replacement [1]. The mismatch between the prosthesis and the knee joint 

anatomy is an important reason for this consequence. Matz et al. showed that the anterior femoral offset, 

anteroposterior size of the femur, and anterior patellar offset were changed in 40%, 60%, and 71% of 

patients after TKA, respectively, compared with those before TKA [2]. At the same time, more scholars have 

also reported the mismatch between the knee joint prosthesis and the knee joint [3]-[5]. Although many 

prosthetic models are introduced, these models only match the size of the tibiofemoral joint bone shape, and 

the adaptation of the knee joint with a high degree of shape variation needs to be improved. Therefore, with 

the development of precision medicine, mining the knowledge of individual shape differences of the knee 

joint and establishing a more comprehensive prosthesis system accordingly is one of the important directions 

of osteological surgery. 

In recent years, many studies have analyzed the morphology and structure of the distal femur. Iranpou et 

al. studied the lowest point of the pulley groove and found that the pulley groove has a "double line" shape 

and a turning point [6]. Thereafter, Chen et al. divided the trochlear groove into 4 categories according to the 

different turning points, but this study only described the lowest point of the trochlear groove and did not do 

further research on the overall shape of the trochlear groove, internal and external condyles and knee joint 

[7]. In another research, Everhart et al. described the shape of the distal femur based on experience and 

obtained five differences, but did not perform a strict data analysis of the overall shape [8]. Therefore, based 

on rough registration and precise registration of samples, our study uses the method of active shape modeling 

to systematically analyze the typical shape and variables of the distal femur.  
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The statistical shape model (SSM) is a statistical method used to describe the morphological changes of 

deformable objects. It has been widely used in various fields, including face recognition, model evaluation, 

etc. [9]-[11]. In the field of medical image analysis, SSM is applied to the segmentation of various structures 

of the human body, such as the spine, joints, brain, heart, liver, etc. [12]. This method has also been applied 

to areas of femoral trochlear dysplasia, foot shape, and knee joints of patients with bone joints [13-15]. In 

addition, SSM is also used for intraoperative navigation. In this paper, SSM is used to analyze the changes in 

individualized shapes. The purpose is to use the SSM method to analyze the overall shape of the distal femur, 

obtain the main characteristics of the distal femur shape, and provide a reference for the design of 

individualized knee joint prostheses. The work in this paper shows that SSM is also a reliable method to 

analyze the individual differences in the shape of the distal femur of Chinese people.  

The other sections of this article are briefed as follows: Section 2 introduces the data set used and the 

method of registration and SSM; Section 3 shows the experimental results, and analyzes the meaning of the 

findings of the experimental results; Section 4 summarize the paper. 

2. MATERIALS AND METHODS 

2.1. Dataset 

The data set used by our study comes from clinical CT scan data of 50 subjects in the Second Affiliated 

Hospital of Xi'an Jiaotong University, China. The image field of CT is 512×512 pixels, the slice thickness 

and the resolution are 1mm, and 0.625mm×0.625mm respectively. The process of data preprocessing as 

shown in Figure 1. includes the following steps: Importing the CT data into Mimics using the region growing 

and reconstruction grid in Mimics for processing [16], and export it in the STL format of three-dimensional 

data. After using CloudCompare to convert the STL data into a point cloud model, horizontally intercept 

65mm at the upper end of the lowest point of the distal femur to construct a model of the distal femur. 

 

Fig. 1: Data preprocessing steps. 

2.2. Method 

The statistical shape analysis (SSM) of medical anatomy usually requires the doctors to label the 

landmarks of samples manually. These are tedious work. Three-dimensional modeling requires even more 

landmarks than two-dimensional. For doing the work automatically, this study starts from the point cloud 

data of the samples and determines the correspondence between samples through registration and obtain the 

landmarks. 

Traditional registration methods use ICP (Iterative Closest Point) algorithm [17], [18]. This method 

achieves registration by minimizing the distance between the two models. However, for different sample 

data, ICP registration may produce a local optimum. Therefore, we first use FPFH (Fast Point cloud Feature 

Histogram) to perform coarse registration, providing a better initial state for subsequent fine registration. The 

point-to-point relationship between the average model and the distal femur sample is obtained through the 

closest point search, and thus a point distribution model (PDM) is generated. The samples are scaled up or 

down to reduce the registration error and improve the accuracy of the point-to-relationship. 

Point cloud Feature Histogram (PFH) is a robust multi-dimensional feature description. It uses 

parameters to indicate the spatial difference between a point and its nearest neighbors. The nearest neighbors 

of points are locally described geometrically in a 3D point cloud dataset [19]. PFH is based on the geometric 

relationship between points and their neighbors and their estimated normal to describe the point cloud 
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collection features. For a point cloud P with n points, the complexity of its point feature histogram is O(n×k2), 

where k represents the number of neighbors of the point p in the point cloud P. Radu et al. proposed an 

optimization algorithm for the point feature histogram, which reduces the computational complexity to 

O(n×k) and retains most of the discriminative ability of PFH, which is called fast point feature histogram 

(FPFH) [20]. Its calculation process is described in the following two steps. 

In the first step, only three feature elements between each query point Pq and its neighborhood points are 

calculated according to formula (1). PFH is to calculate all combinations of feature elements of 

neighborhood points, while in this step, only feature elements between query points and neighboring points 

are calculated. Use the “Body text” style for all paragraphs. The following is an example of the “Bullet” style, 

which you may want to use for lists. 

 

𝛼 = 𝑣 ∙ 𝑛𝑗                                         

∅ = (𝑢 ∙ (𝑝𝑗 − 𝑝𝑖)) ‖𝑝𝑗 − 𝑝𝑖‖⁄                                                                      (1) 

  𝜃 = 𝑎𝑟𝑐𝑡𝑎𝑛 (𝑤 ∙ 𝑛𝑗, 𝑢 ∙ 𝑛𝑗) 

<𝑝𝑗, 𝑝𝑖> (j≠i) is any pair of points in the k neighborhood of p and the estimated normals of 𝑝𝑗 and 𝑝𝑖  are 𝑛𝑗 and 𝑛𝑖 
respectively (𝑝𝑖  being the point with a smaller angle between its associated normal and the line connecting the points)[20] 

 

Fig. 2: (a) The influence area of the point feature histogram (b) The influence area of the fast point feature histogram. 

As shown in Figure 2, Figure 2(a) is the PFH calculation feature process, that is, the feature value of all 

combinations of neighboring points (all connections in the figure, including but not limited to the connection 

between 𝑃𝑞 and 𝑃𝑘), Figure 2 (b) is the FPFH calculation feature process, only the feature elements between 

𝑃𝑞 (query point) and the adjacent point (red line in the right picture) are calculated. It can be seen that the 

complexity is reduced and we call it Simple Point Feature Histograms (SPFH). 

The second step is to re-determine its k neighbors and use the neighboring SPFH values to weight p to 

get the final FPFH. 

𝐹𝑃𝐹𝐻(𝑝) = 𝑆𝑃𝐹(𝑃) +
1

𝑘
∑

1

𝜔𝑘
∙ 𝑆𝑃𝐹(𝑝𝑘)                                                       (2)

𝑘

𝑖=1

 

The establishment of a statistical shape model (SSM) requires the construction of a basic point cloud 

model set (Si), also known as a point distribution model (PDM) [21]. Choose any point cloud model of the 

distal femur as the target model, perform denoising, mesh smoothing and uniform down-sampling operations 

on the original data, and create a standard node (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖) with 4000 uniform distributions [22]. Perform 

FPFH rough registration of the remaining samples with the target and automatically align them by a 

combination of ICP (Iterative closest point) and GPA (Generalized Procrustes analysis) [16]. The point-to-

point relationship is established through the nearest point search, and the corresponding point set of the distal 

femur is constructed, and the average model of the joint is obtained. Construct the covariance matrix (Cov) 

of each point distribution model through the sample set (𝑆𝑖,) [23]. 

{𝐶𝑜𝑣 =
1

𝑝 − 1
∑(𝑆𝑖 − 𝑆̅)(𝑆𝑖 − 𝑆̅)

𝑇

𝑝

𝑖=1

 

𝑤𝑖𝑡ℎ  𝑆𝑖 = (𝑥1, 𝑦1, 𝑧1, ⋯ , 𝑥𝑛 , 𝑦𝑛, 𝑧𝑛)
𝑇                                                                (3) 
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𝑆̅ =
1

𝑝
∑𝑆𝑖 , 𝑖 = 1: 𝑝                 

𝑝

𝑖=1

 

P is the number of sample sets, and n is the number of points for each sample. 

In order to make the model more representative, as shown in Figure 3, the first average model is used as 

the new target model [24], and the second average model is created, which shows more specificity. The 

typical features of the distal femur are also preserved as much as possible. 

 

Fig. 3: Process diagram of calculating average model 

Principal Component Analysis (PCA) [25] was invented by Carl Pearson in 1901 for analyzing data and 

establishing mathematical models. The method isessentially to decompose the covariance matrix to obtain 

the principal components of the data (eigenvectors) and their weights (eigenvalues). Use the principal 

component analysis method to analyze (3) the covariance matrix of the point distribution model. We use the 

eigenvalues and eigenvectors of the covariance matrix to obtain the overall geometric characteristics of the 

distal femur. 

{
𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 = (𝜆1, 𝜆2, ⋯ , 𝜆𝑠), 𝜆1 ≥ 𝜆2⋯ ≥ 𝜆𝑠 ≥ 0,

𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟 = (𝑃1, 𝑃2, ⋯ , 𝑃𝑠),                                      
                                 (4) 

Among them, the size of 𝑃𝑖 is 1 × 3𝑛. The eigenvector corresponding to the largest eigenvalue is the first 

principal component, the eigenvector corresponding to the second largest eigenvalue is the second principal 

component, and so on. 

Through the average model, eigenvalues and principal components constitute a statistical shape model, 

and any specific sample can be represented by the statistical shape model, where 𝑎𝑗 represents the weight of 

each principal component [26]. 

{
 

 𝑆′ = 𝑆̅ +∑ 𝑓(𝜆𝑗)𝑃𝑗 ,
𝑠

𝑗=1

𝑓(𝜆𝑗) = 𝑎𝑗√𝜆𝑗 ,            

                                                                                  (5) 

3. RESULTS 

As shown in Figure 4, the eigenvalues of the distal femur are decreasing exponentially; the first 

eigenvalue is 19280, the second eigenvalue is 5568, the third eigenvalue is 1917, the tenth eigenvalue drops 

to about 250, the 40th eigenvalue is close to zero. With the attenuation of the eigenvalue amplitude, the 

influence of the principal components on the average model gradually decreases. Table 1 shows the 

proportion of the top ten principal components affecting the morphological characteristics of the distal femur. 
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Starting from the tenth principal component, the influence is less than 1%. Therefore, this article mainly 

analyzes and describes the first nine principal components. 

 

Fig. 4: Femoral PDM covariance matrix eigenvalues between the number of principal components 

Table 1:  THE INFLUENCE RATIO OF PRINCIPAL COMPONENTS 

principal 

components 
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 

proportion 0.563 0.162 0.056 0.032 0.026 0.021 0.013 0.011 0.010 0.008 

As shown in Figure 5, the SSM difference of PC1 is mainly in the size of the entire distal femur, which is 

similarto the principal components of many statistical shape models. The first principal component usually 

represents the size. The difference of PC2 is mainly in the size of the mediolateral size of the distal femur 

and the curvature of the transition from the medial and lateral femoral shaft to the medial and lateral 

condyles. The difference of PC3 is mainly in the size of the mediolateral and anteroposterior sizes of the 

distal femur, the curvature of the transition from the medial and lateral femoral shaft to the medial and 

external condyles, and the curvature of the anterior and posterior condyles. The main difference in PC4 lies 

in the width and depth of the trochlear groove. The difference in PC5 is mainly in the height of the lateral 

anterior condyle. The difference of PC6 is mainly the curvature of the transition from the medial and lateral 

femoral shaft to the medial and lateral condyles and the curvature of the anterior and posterior condyles. The 

difference in PC7 is mainly the curvature of the transition from the medial and lateral femoral shaft to the 

medial and lateral condyles. The difference in PC8 is primarily the size and curvature of the medial condyle. 

The difference in PC9 is mainly in the ratio of the size of the trochlear groove to the mediolateral size of the 

distal femur. 

 

Fig. 5: The three-dimensional surface rendering of the femoral SSM, wherethe color represents the difference of 

principal component and the average model. 
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The prosthesis system provides the basis. Although the current prosthesis system has different models, it 

is designed based on the different sizes of the same knee joint shape, which leads to the mismatch between 

the anatomical structure of some people and the prosthesis. This study found many individual differences in 

the above morphology in the population, mainly focusing on the size and curvature of the femoral condyle 

and the shape of the trochlear groove. These results will further guide the local improvement of the existing 

prosthesis and the new multi-classificationdesign of prosthesis. 

4. Conclusion 

In this study, we used the method of FPFH combined with ICP to construct a statistical shape model. The 

nine principal components that had the most significant influence on the shape variation of the distal femur 

were obtained through principal component analysis. We found that the main morphological characteristics 

of the distal femur were the mediolateral and anteroposterior sizes of the femur, the curvature from the 

femoral shaft to the medial and lateral condyle, the curvature of the anterior and posterior condyle, the width 

and depth of the trochlear groove, the ratio of the size of the medial to the lateral condyle, the ratio of the 

size of the trochlear groove to the distal femur, etc. These results provided an important reference for more 

individualized prosthesis design. 

Previous studies reported the classification of trochlear dysplasia [28]. For the classification of the 

normal distal femur, more attention had been attributed in recent years. It was reported that the trochlear 

groove tracking was composed of two parts, which were the laterally orientated proximal and medially 

orientated distal parts marked by a turning point [6, 7]. And the other literature indicated the difference of the 

medial and lateral condyles based on clinical experience [8]. Compared with previous studies, this study 

applied the statistical shape model to analyze the morphological differences of the distal femur from the 

perspective of the whole distal femur and obtained multiple morphological characteristics with individual 

differences by principal component analysis. We will further use the principal component characteristics for 

cluster analysis and perform targeted parameter measurements based on the morphological characteristics 

suggested by the principal components to provide more reference data for the design of a more 

comprehensive prosthesis system of the distal femur. 
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